NRC CNRC

Institute for Research in Construction

Demand Responsive Buildings: Reducing on-peak electricity use in offices and houses Guy Newsham et al.

National Research Conseil national Council Canada de recherches Canada

Overview

Why demand response is important

NCCNC

- Commercial Building DR
 - Lighting
 - HVAC
- Residential DR
 - Air-conditioning

Introduction

- Building energy use growing
- On-peak electricity growing faster

The best of the times and the sunda

July 28, 2006

Thousands face second Central London blackout

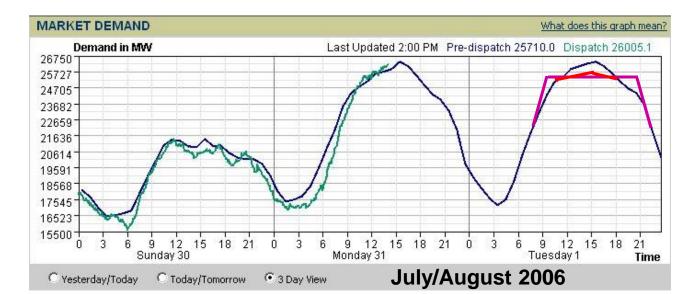
BY ELSA MCLAREN AND AGENCIES

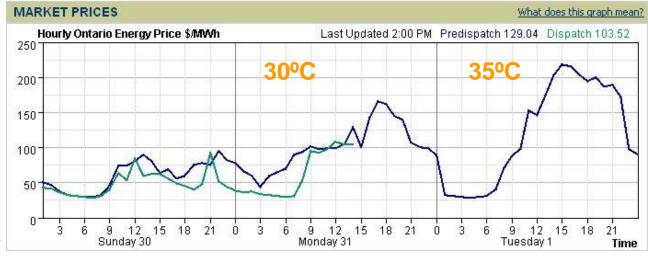
Times Online

A second wave of power cuts could affect thousands of homes and businesses in Central London today, the energy supplier has warned.

Can supply meet demand?

CLOSED OUR ROWER IS OUT WE WILL RE-OPEN WHEN IT HAS RETURNED SORRY FOR THE INCONVENI

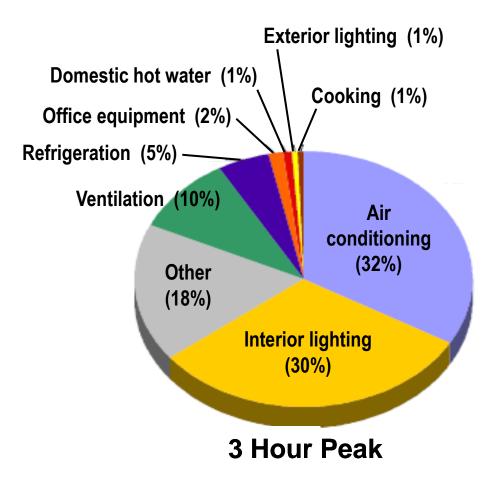

Introduction


 Summer load profile, Ontario

Load shiftingLoad shedding

 2-5% peak reduction can halve spot price

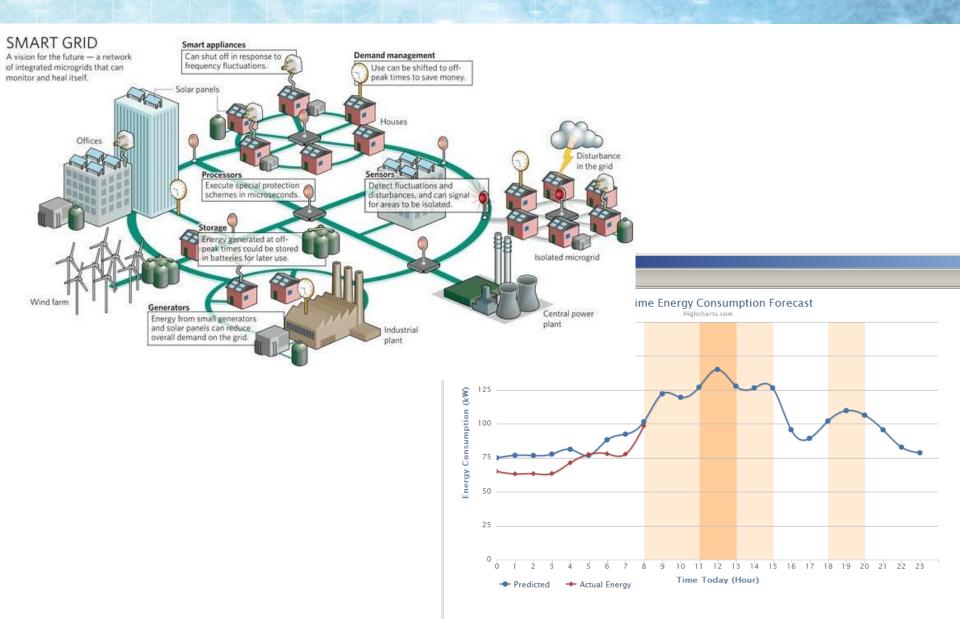
http://www.theimo.com/



NCCNIC

Peak Use Profile in Buildings

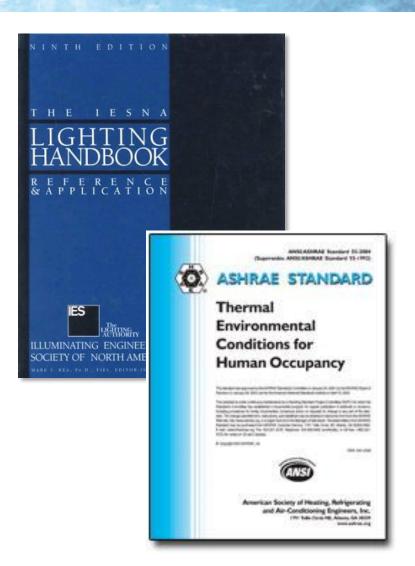
A/C and lighting are the obvious targets



Canada vs. California

- Summer vs. winter peaks
 - Most of Canada, winter is peak
 - Peaks at different times
 - Some strategies in common

NCCNIC


DR as a Smart Grid "app"

Comfort Effects?

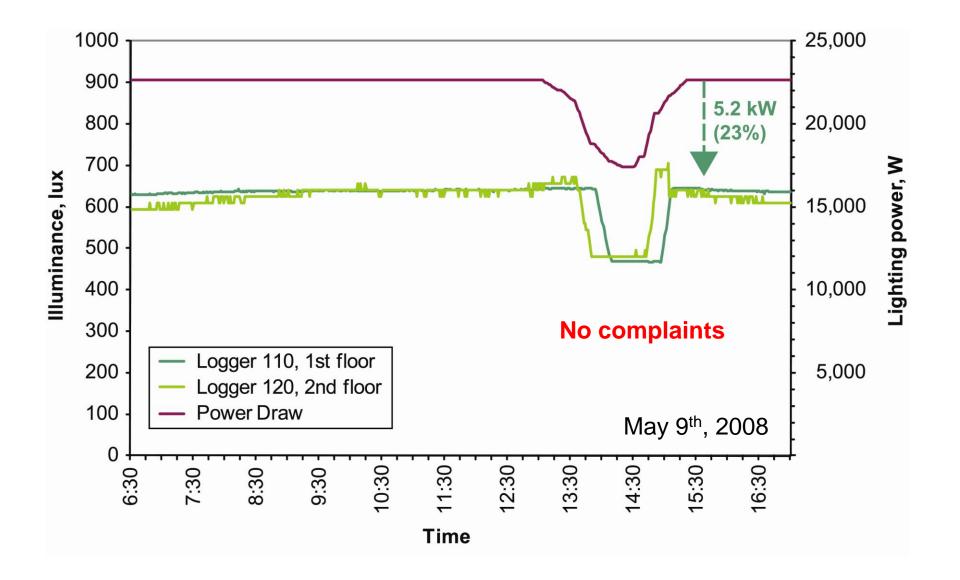
- Usually set lighting and temperature levels to optimize comfort
- Not true with demand response

Laboratory Studies

- Electric lighting can be dimmed without hardship by:
 - 20% over 10 seconds, with no daylight
 - 40%+ over 30 minutes, with no daylight, or over 10 seconds with daylight
- Temperature can increase without hardship by:
 - 1.5°C over 2½ hours

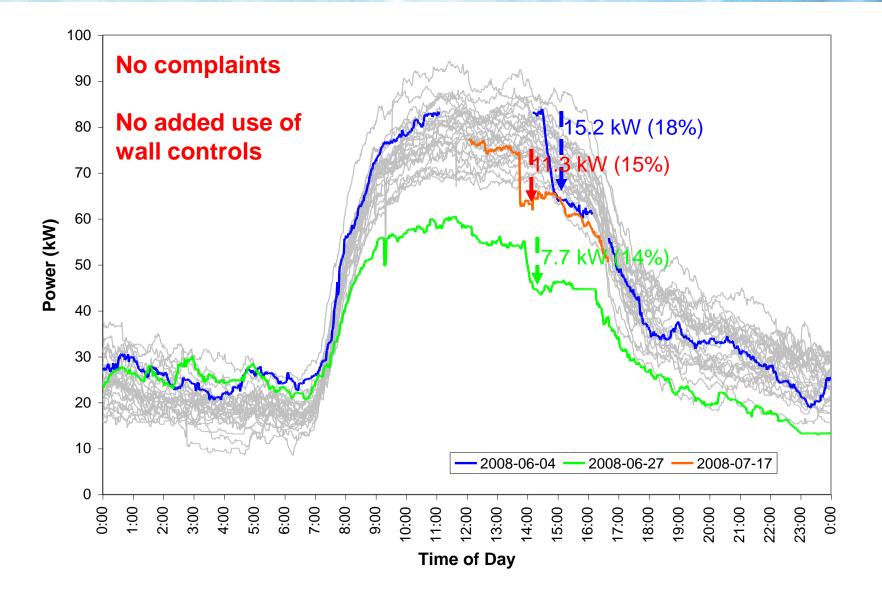
Federal office

Community college



Office building

• 525 luminaires, 330 dimmed on load shed days



- College campus
 - Offices, classrooms, and corridors in 7 buildings
 - 2300 luminaires, 1852 dimmed on load shed days

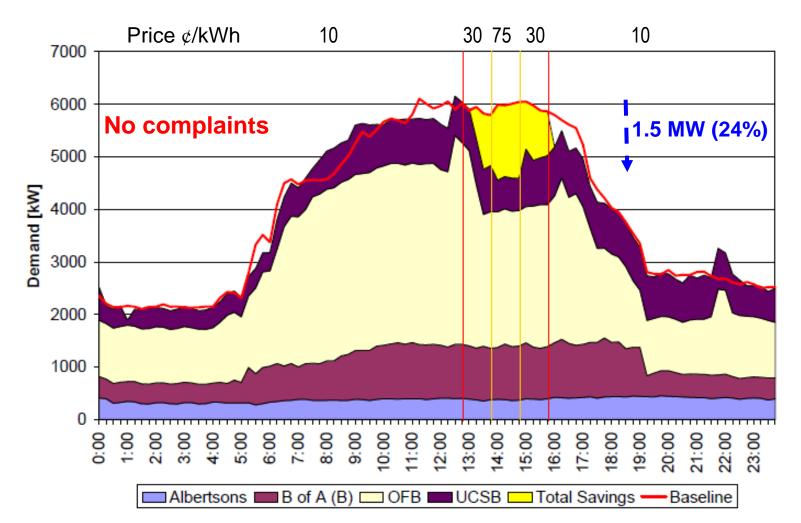
HVAC Field Trials

California

- Automated demand response trials in 2004
- Mostly HVAC strategies
- 18 sites, 36 buildings, >10 million ft² floor area

Piette et al., Findings from the 2004 Fully Automated Demand Response Tests in Large Facilities, LBNL/DRRC Report LBNL-58178 (2005). http://drrc.lbl.gov/pubs/58178.pdf

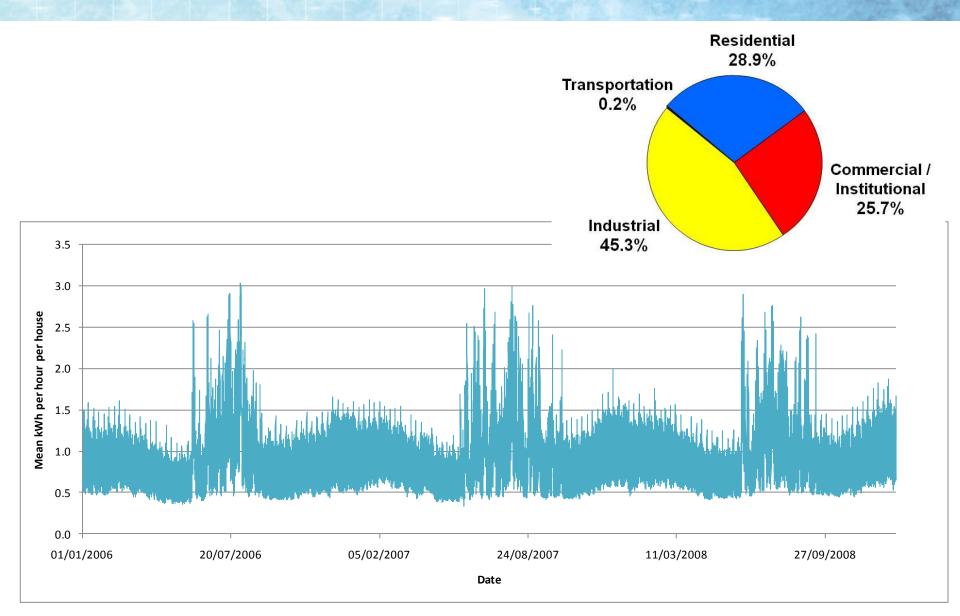
http://drrc.lbl.gov/drrc-pubsall.html


HVAC Field Trials

Site	30 ¢/kWh	75 ¢/kWh				
Albertsons	Overhead light 35% off	Anti-sweat door heater night-mode				
B of A	Supply air temp. reset $55^{\circ}F \rightarrow 59^{\circ}F$	Supply air temp. reset \rightarrow 59°F				
	Duct static pressure 2.2 IWC \rightarrow 1.8 IWC	Duct static pressure \rightarrow 1.4 IWC				
Cal EPA	Duct static pressure 1.0 IWC \rightarrow 0.5 IWC	Turn off light where daylight is available				
CETC	Unload chiller and cool with ice storage					
	Two air handling units off					
	Electric humidifier off					
Cisco	VAV zone setup 2°F					
	Computer Room AH setup 2°F					
	Boiler pump off & stairwell fan-coils off					
	Sweep lighting where daylight is available					
	Stairwell, lobby, and hallway lights off					
50 Douglas	Global zone setup 76°F \rightarrow 78°F	Global zone setup $\rightarrow 80^{\circ}$ F				
Summit Ctr	Global zone setup $76^{\circ}F \rightarrow 78^{\circ}F$	Global zone setup \rightarrow 80°F				
Echelon	Zone set point increase	2 of 3 rooftop units off				
	Dim office lighting	Lobby, common area light off				
		Hallway light 33~50% off				
OFB	Global zone setup $72^{\circ}F \rightarrow 76^{\circ}F$	Global zone setup \rightarrow 78°F				
	Global zone setback 70°F \rightarrow 68°F	Global zone setback \rightarrow 66°F				
UCSB	Supply fan VFD 70% limit	Supply fan VFD 60% limit				
	Economizer 100% open	Duct static pressure reset 0.4 IWC (partial)				
		Heating/cooling valve closed				

HVAC Field Trials

Sept 8th, outdoor temperature 32°C (90°F)



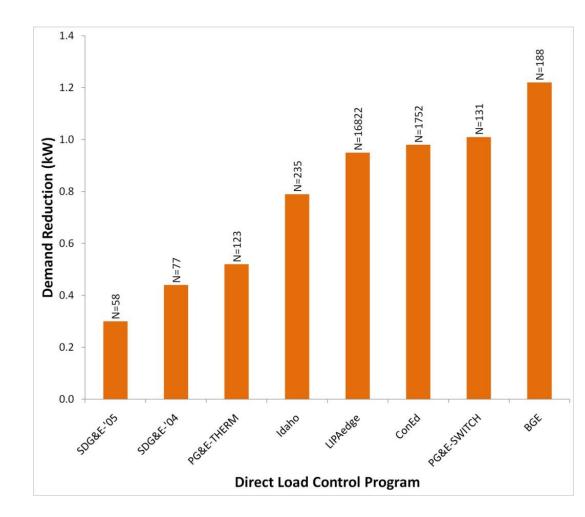
Commercial DR Summary

- Substantial peak reductions possible
- Little risk of substantial hardship, if guidelines followed, but ...
- These are <u>TEMPORARY</u> measures in extreme circumstances NOT the new normal
- RP-1 and LEED now include DR

NCCNC

The Residential Problem

PeakSaver Program


- Voluntary province-wide program
- Direct load control of central a/c by utility
- Thermostat increased 2°C during 4-hr on event days (expected to be high demand)
- Maximum of 10 events per year
- Occupant may opt out of an event

Direct Load Control - Literature Review

 "The effect of utility time-varying pricing and load control strategies on residential summer peak electricity use: A review" Newsham & Bowker, Energy Policy Vol. 38 (2010), pp. 3289–3296

NCCNRC

http://www.nrc-cnrc.gc.ca/eng/projects/irc/zero-peak.html

Data Set

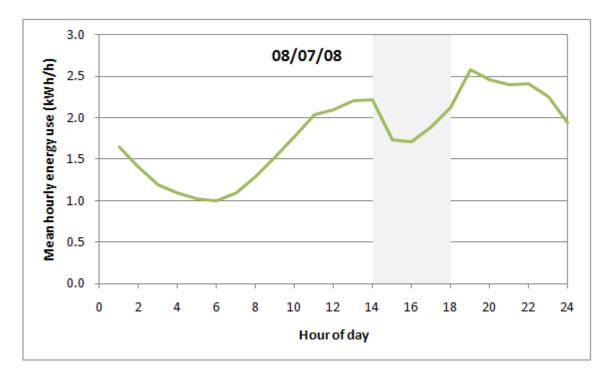
Consists of

- 3 years of hourly data
 - Up to 1297 households (2006-2008)
 - Survey was conducted on 360 households in 2006

NRC-C

- 2008 had
 - hourly data from all 1297 residential accounts
 - 205 households enrolled in the Ontario-wide PeakSaver program

NCCNC


Household Characteristics

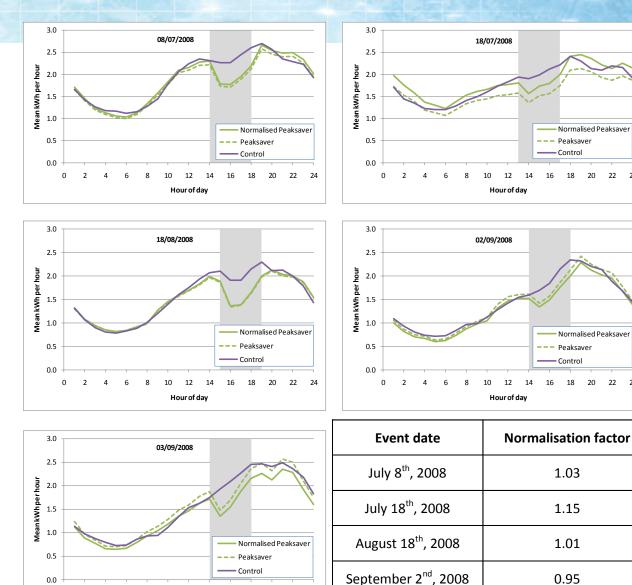
				N=320						
			Min		Max.	M	ean	S.D.		
Total electrical energy used, kWh			19	57	1816	5	8727	345	6	
N=320 Yes					1	١o				
Use electricity to heat water?		32				288				
Use electricity to heat space?		26					294			
Own central air conditioner?		271				49				
Own window air conditioner?		13 (one=8; two=5)				307				
Is the house detached? 215						105				
Number of occupants	1	2	3	4	5	6	7	8	?	
	15	101	71	90	32	8	0	1	2	

	Ν	Min.	Max.	Mean	S.D.
Age of house, years	291	1	156	16.3	20.8
How old is central a/c? years	250	0	50	5.5	6.4
Finished living space, ft ² (m ²)	310	1000 (93)	4500 (418)	2035 (189)	668 (62)

Measuring the Effect

What would energy use have been without the event?

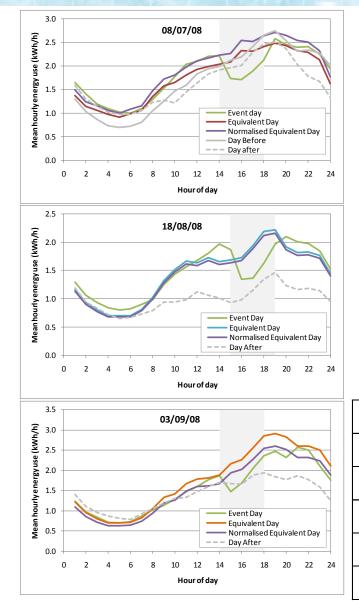
- 1. Participants on event day vs. Control group
- 2. Participants on event day vs Participants on equivalent non-event day
- 3. Participants only, multiple regression analysis
- 4. Participants only, time-series analysis

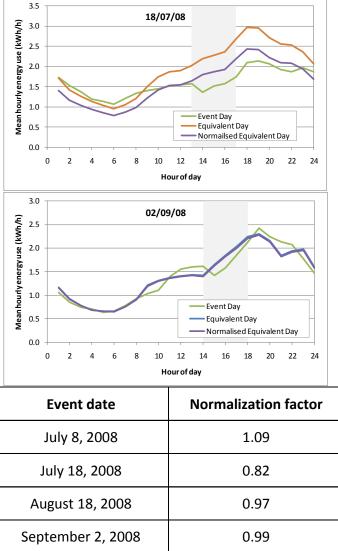

NRC-CNRC

0.92

vs. Control Group (N=268)

0.0


Hour of day



September 3rd, 2008

vs. Equivalent Day

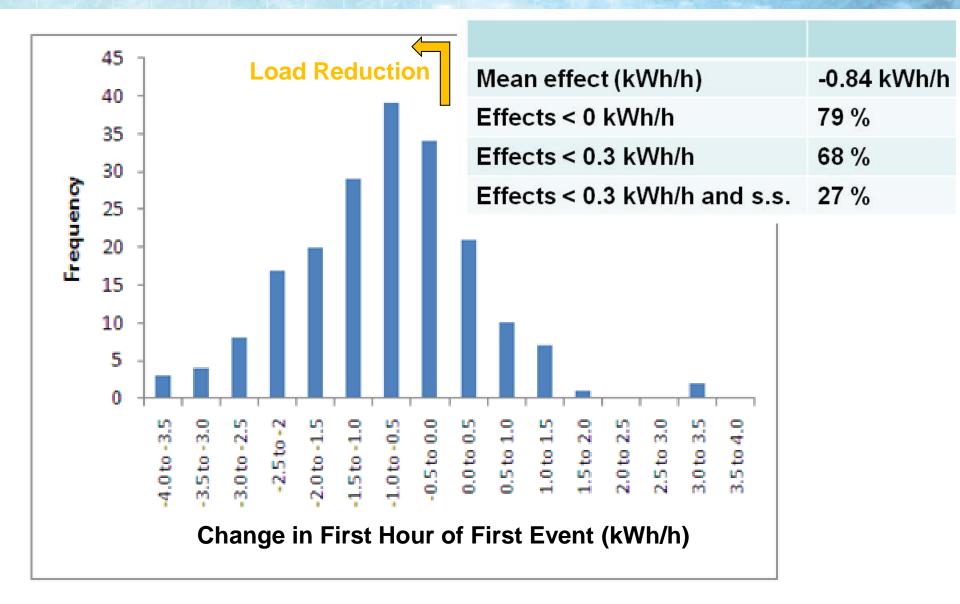
September 3, 2008

0.89

Multiple Regression

$$\begin{split} y_t &= \sum_{l=0}^6 \beta_{CDH24,l} CDH24_{t-l} + \sum_{l=0}^6 \beta_{RH,l} RH_{t-l} + \beta_{NWD} NWD_t + \beta_{ST} ST_t + \\ &\sum_{m=6}^{10} \beta_{MTH,m} MTH_{m,t} + \sum_{h=1}^{24} \beta_{HR,h} HR_{h,t} + \sum_{h=1}^{24} \beta_{E1,h} E1_{h,t} + \sum_{h=1}^{24} \beta_{E2,h} E2_{h,t} + \\ &\sum_{h=1}^{24} \beta_{E3,h} E3_{h,t} + \sum_{h=1}^{24} \beta_{E4,h} E4_{h,t} + \sum_{h=1}^{24} \beta_{E5,h} E5_{h,t} + \varepsilon_t \end{split}$$

 Time-series regression is much more complex


Compare Results

Different methods give different results

			Estimated eff			
	Event-ending Hour	Method 1	Method 2	Method 3	Method 4 TS Regr.	
Event Date		Cntrl. Grp.	Equiv. Day	Simp. Regr.		
July 8, 2008	15	21.0	23.8	32.7	22.9	
	16	22.1	32.8	35.2	24.9	
	17	20.0	25.0	33.0	23.4	
	18	15.7	19.5	28.9	19.9	
July 18, 2008	14	17.8	24.3	30.8	12.3	
	15	12.4	18.9	27.4		
	16	15.4	18.8	29.1		
	17	9.6	20.3	25.6		
August 18, 2008	16	28.7	20.0	21.2	26.3	
	17	27.4	27.4	29.0	31.0	
	18	23.3	23.4	21.4	25.4	
	19	13.2	8.5	6.7	13.8	
September 2, 2008	15	20.5	12.9	(20.6)	9.4	
-	16	19.4	13.7	(13.1)		
	17	18.1	7.3	(29.2)		
	18	14.2	4.0	(37.4)		
September 3, 2008	15	30.1	23.8	23.8	15.5	
	16	26.1	16.4	23.5		
	17	17.3	9.9	14.1		
	18	11.8	7.1	4.3		

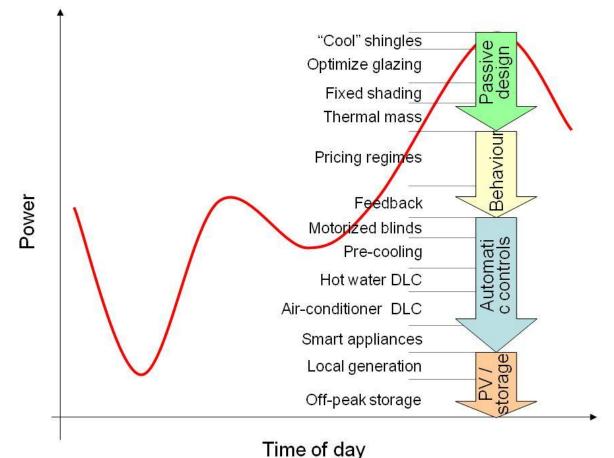
NCCNIC

Individual Household Participation

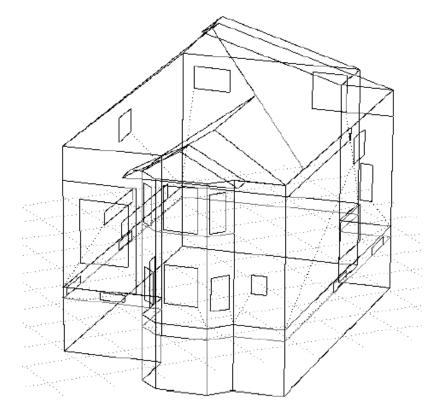
Reasons for Non-participation

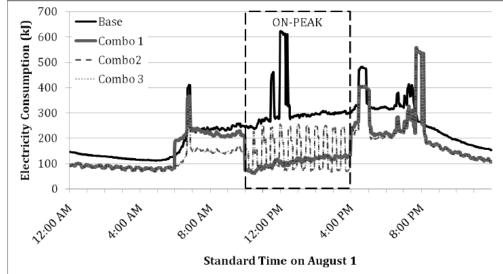
- Equipment failure: thermostat reset signal was not received or actuated
- Occupants overrode thermostat or opted out
- Household characteristics such that a/c would not have been used anyway
- Undersized a/c units with continuous operation even at higher setpoint
- Occupants used more electricity for other things

Individual Household Participation


- Which household characteristics predict participation?
- Help to target DSM programs

Pursue in future studies …


"Power Nap" Project


What combination of measures could reduce grid power draw to zero during peak periods?

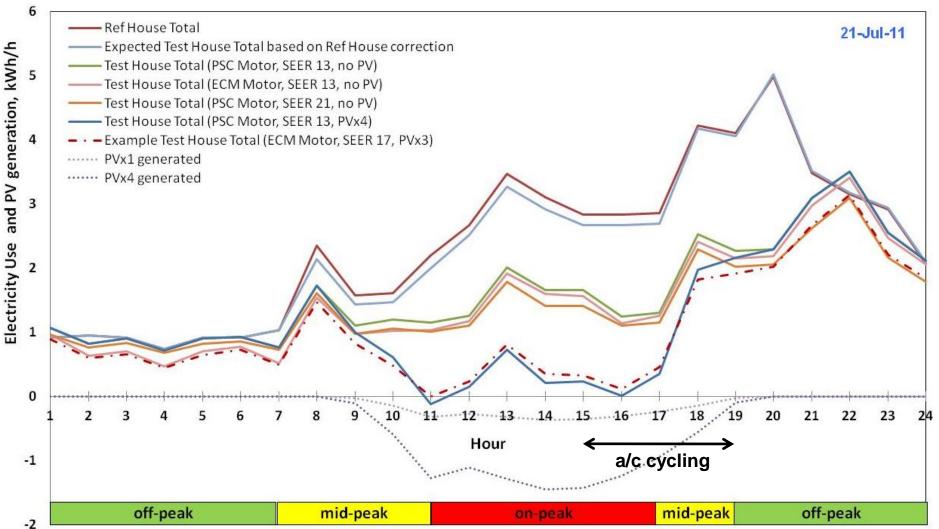
Carleton Univ. Simulations

 ESP-r model used to explore design and operation options to reduce peak load

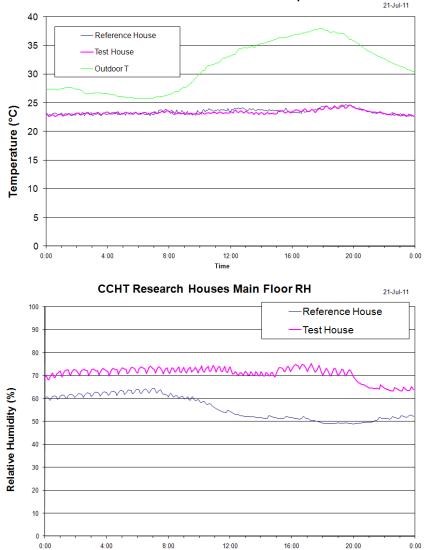
NCCNC

NC CNRC

CCHT Trials, Summer 2011


- a/c cycling
- External blinds
- CFL lighting

- Shift washer/dryer to later
- Close basement registers
- PV from Info Centre



The "worst day of the year"

NCCNC

The "worst day of the year"

Time

CCHT Research Houses Main Floor Temperature

NRC.CNRC

Residential DR Summary

- Analysis of PeakSaver data revealed:
 - Average peak load reductions were 0.2 0.9 kW per household, varying by method of analysis
 - Recommend use of time-series regression
 - Perhaps only a minority of participant households contributed to a given event
- Zero peak in houses is achievable