Experiences with Small Hydro Driven Portable Generator Sets in Rural Areas

By Dr. S.P. Singh Department of Electrical Engineering IIT Roorkee-247667

PORTABLE PILOT PROGRAMME ON PORTABLE MICRO HYDEL IN HILLY AREAS

• Scheme initiated by IREDA & MNES in 7 Himalayan Hilly state in 1996

• Total no Sites Identified 50

Layout of a Small Hydro station

Distribution of Portable sets

State

- 1. UP (Uttarakhand)
- 2.Himachal Pradesh
- 3. Arunachal Pradesh
- 4.Meghalaya
- 5 Bihar (JharKhand)
- 6. West Bengal
- 7. Jammu & Kashmir

No of sets (Capacity)

- 1. 10 (10kW)
- 2. 5+10 (10kW & 15kW)
- 3. 5 (5kW)
- 4. 15 (5kW)
- 5. 10 (5kW)
- 6. 5(10kW)
- 7. 5(5 kW)

Specifications for Equipment

Absence of discharge data

- Non availability of spectrum of head
- Micro Pelton turbine with 4 nozzle in order to offer flexibility to the quantum of flow by closing 1 to 3 nozzle depending on site discharge(3 to 70 lps)
- Head range 30-70 M
- Rating Runner PCD Jet dia
- 5/10kW 250 mm
- 15 kW 315mm

20.0mm

30.4mm

Sets were Designed for two Categories.

Runner PCD

- 5/10 kW
- 250mm

Jet dia

- 5/10kW
- 20mm

- 15kW
- 315mm

- 15kW
- 30.4mm

Type of the generating Equipment Purchased

- Pelton Turbine (with Four nozzle Gugler make)
- Synchronous Generator (4 Pole)
- Brushless Excitation System
- Electronic Load Controller (for speed Regulation)

Pilot Programme in Portable Sets

No	State	5Kw	10kW	15kW	Total
1	Uttarnchal			10	10
2	Himachal Pradesh		5	10	15
3	Arunachal Pradesh	5			5
4	Meghalaya			5	5
5	Bihar(JharkhanD)		5		5
6	West Bengal		5		5
7	Jammu Kashmir	5			5
	Total	10	15	25	50

Selection of Euipment

- Absence of discharge data
- Non availability of spectrum of head
- Micro Pelton turbine with 4 nozzle in order to offer flexibility to the quantum of flow by closing 1 to 3 nozzle depending on site discharge(3 to 70 lps)
- Head range 30-70 M
- Rating Runner PCD
- 5/10kW 250 mm
- 15 kW 315mm

Jet dia 20.0mm

30.4mm

Portable unit specifications

S.NO	Parameters	Unit	5/10kW	15 kW	
	Type of turbine		Vertical Pelton	Vertical Pelton	
	Rated Head	m	5-150	5-150	
	Turbine speed	rpm	Depends on head	Depends on head	
	Runaway speed	rmp	1.8 fold	1.8 fold	
	efficiency		87	87	
	Turbine generator connection		Belt driven	Belt driven	
	Type of generator		synchronous	synchronous	
	speed		1500	1500	
	Dimension LXWXH	mm	15550x1450x400	15550x1450400	
	Complete unit	Kg	300	3245	
	Wt of Generator (5 pole 1500 rpm	Kg	120	142	

Problems in Commissioning of a Plant

- Head available at site was different than the design head
- Supplied Pulley and belt system was discarded and redesigned to achieve the synchronous speed as per head (no of poles)available at the site.

Pulley Sizing Calculations

		Annovine
	Head	dependent Turbine Speed
	1000	Vis-a-Vis
	Cor	Istant Generator Speed
Turbine 3	Speed = $n_1 =$	k√2gH D-Diamaters (
(rpn	n)	πD / 60 H = Head action
		g - Acceleration due to gravity (a second
Since TDn	1 = 1 Jour	(9.81 m/sec ²)
60	.1 – к ∨ ∠gH	k - 0.43 for Head 30 - 70 m 0.44 -do- 70 - 100 m 0.45 -do- 100 - 150 m
5/10 kW	D = 250 mm	
15 kW The speed d synchronised pulleys of di	D = 315 mm derived from the with the consta fferent diamete	e above, for different heads would have to be ant Generator speed of 1500 rpm by providing
15 kW The speed d synchronised pulleys of di operated thro d1	D = 315 mm lerived from the with the consti fferent diamete ugh a common	e above, for different heads would have to be ant Generator speed of 1500 rpm by providing rs on the turbine & generator shafts to be belt.
15 kW The speed d synchronised pulleys of di operated thro d1 urbine	D = 315 mm lerived from the vith the consta fferent diameter ugh a common	e above, for different heads would have to be ant Generator speed of 1500 rpm by providing rs on the turbine & generator shafts to be belt.
15 kW The speed d synchronised pulleys of di operated thro d1 urbine	D = 315 mm lerived from the with the const fferent diamete ugh a common	e above, for different heads would have to be ant Generator speed of 1500 rpm by providing rs on the turbine & generator shafts to be belt. d_2 Generator $n_2 = \text{speed of generator i.e. 1500 rpm}$
15 kW The speed d synchronised pulleys of di operated thro d1 urbine	D = 315 mm lerived from the with the const fferent diamete ugh a common	P above, for different heads would have to be ant Generator speed of 1500 rpm by providing rs on the turbine & generator shafts to be belt. d_2 Generator n_2 = speed of generator i.e. 1500 rpm. n_1 = speed of turbine
15 kW The speed d synchronised pulleys of di operated thro d_1 urbine $1d_1 = n_2d_2$	D = 315 mm lerived from the with the constant fifterent diamete uugh a common	e above, for different heads would have to be ant Generator speed of 1500 rpm by providing rs on the turbine & generator shafts to be belt. d_2 Generator n_2 = speed of generator i.e. 1500 rpm. n_1 = speed of turbine d_2 = output

Problem in Commissioning

Generator pulley and belt drive were designed to get synchronous speed for a given head

		R	1660						
		К	0.43						
		Head	Turbine	turbine	Generator	Speed	turbine pulley	generator	belt length
			pulley	speed	rpm	ratio	dia	pulley dia	
				NT	NG	SR=NG/NT	DT	GT=DT/SR	
Pujrali	15	58	0.28	990	1500	1.52	350	231	2572
pandara	10	30	0.224	890	1500	1.69	224	133	2220
shoon	15	39	0.315	717	1500	2.09	350	167	2472
leo	15	39	0.315	717	1500	2.09	350	167	2472
saichu	15	39	0.315	717	1500	2.09	350	167	2472
sathari	15	39	0.315	717	1500	2.09	350	167	2472
chasak bhatari	15	39	0.315	717	1500	2.09	350	167	2472
chasak	15	39	0.315	717	1500	2.09	200	96	2124
udeen	10	42	0.25	943	1500	1.59	200	126	2171
hillutwan	10	42	0.25	943	1500	1.59	200	126	2171
sahali	10	45	0.25	977	1500	1.54	200	130	2178
sach bhatari	10	45	0.25	977	1500	1.54	200	130	2178

Operation & Maintenance Problems

- No water level sensing device was used at forebay.
- Due to varying flow frequency could not be maintained (Part load operation problem).
- No emergency shut down device was used
- Frequent failure of AVR and controller cards
- Frequent failure of civil works at intake

General layout of an MHP using an IMAG monitoring control and protection equipment

OPTIMIZING THE PLANT LAYOUT FOR IMPROVING SELF REGULATION OF A SMALL HYDRO POWER PLANT

DIRECT COUPLED
 GENERATOR

DIRECT COUPLED
 GENERATOR WITH BELT DRIVE
 AND WITHOUT ANY FLY WHEEL

 DIRECT COUPLED GENERATOR WITH BELT DRIVE AND WITH FLY WHEEL

DIFFERENT LAYOUTS (SCHEME 1, 2 AND 3)

Solution of Allevi 's Chart to Compute Rise in Pressure in water column and to estimate the rise and drop in speed with rejection and Application of load

- **1.** Wave propagation speed
- Accelerating time water column (T_w). Or water starting time
- 3. Reflection time of pressure wave(T_r)
- 4. Closing time (T_f)
- 5. $h_w = T_w/T_r$ (water acceleration time/ water reflection time Normally $T_w < T_r$)
- $6 Z^2 = (H_{max}/H_r)$
- 7 Calculate max Rise and drop in speed (± 1.15 to .8 t0 .99)

Coordination of water conductor, turbine & generator time constants

DEVELOMENT OF DSP BASED LOAD COTROLLER FOR THREE-PHASE SEIG

Capacitor Bank

THREE-PHASE IM AS SINGLE PHASE SEIG WITH LOAD CONTROLLER

- DC controllable load (Random Harmonics generated)
- Component required
- Voltage sensor 1
- 1 ph rectifier
- DC chopper (1 IGBT)
- DSP and supply

SEIG WITH ETRC AC CHOPPER CONTROL (Symmetric Control)

Component Required

- AC controllable load (side band Harmonics generated)
- Component
 required
- Voltage sensor 1
- 1 ph rectifier
- AC chopper (6 IGBT)
- DSP and supply
- ETRC and Sinusoidal PWM AC chopper control used
- Odd Harmonics appear as side band & integral multiple of switching frequency

Power & Control Circuit

Schematic diagram DSP based induction generator controller for single phase SEIG.

DSP STATCOM BASED VOLTAGE AND FREQUENCY REGULATION

Controllers for Constant Speed Application

- Development of DSP based load control and protection scheme for stand alone synchronous generator
- Excitation System for synchronous generator
- Control system for parallel operation of synchronous and induction generator

Variable Speed Application

- Variable speed Stand alone Induction
 generator Cage machine
- Variable speed generators (wound rotor machine to optimize the plant output under varying head conditions(Turbine best efficiency point changes with change in the head conditions subsequently the speed)

Design Softwares Developed

- 1. Sizing of installed capacity of the stand alone power station
- Feasibility Study of SHP
- Energy pricing and Financial analysis (cash flow) for the power scheme with subsidy and without subsidy (computation of IRR, NPV, Unit cost, Debt Service Coverage Ratio etc. (as per Govt. norms)
- Design of Earthing system for SHP
- Design of distribution system

Thanks for Kind Attention