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ABSTRACT: Concurrent monitoring schemes that achieve simultaneous | Disturbances

process and quality-relevant monitoring have recently attracted much 1

attention. In this Article, we formulate a supervised fault diagnosis framework Quality data Quality data
based on canonical correlation analysis (CCA) with regularization, which Process 1 Y s e o
includes quality-relevant and quality-irrelevant fault diagnosis. Monitoring with delay 11
indices based on regularized concurrent CCA models are introduced to 11
perform quality-relevant, potentially quality-relevant, and quality-irrelevant »| Inferential £
monitoring. Additionally, contribution plots and generalized reconstruction- | monitoring [ — |
based contribution methods are developed, along with their implications for [Process data I

the diagnosis based on the various monitoring indices. Finally, the —_——————— I
Tennessee Eastman process is used to illustrate the supervised monitoring I Quality T

and diagnosis of quality-relevant and quality-irrelevant disturbances, and the : monitoring |

1S known disturbances are classified into two categories based on whether

they have an impact on product quality variables.

1. INTRODUCTION

Process monitoring and diagnosis as a major approach of
process data analytics has been one of the most active research
areas in process systems engineering (PSE) over the past three
decades.' " With the availability of high dimensional process
data, data-driven latent variable methods, such as principal
component analysis (PCA) and partial least-squares (PLS),
have been the preferred methods. The recent resurgence of
interest in machine learning and big data in other disciplines
has revived similar interest in the PSE area.””” It is hopeful
that data analytics will bring significant benefits for a wide
range of chemical engineering applications.

With a large amount of process data, PCA has been widely
used to analyze variations in process variables and capture the
normal region of variability. If real-time data from the process
fall outside the predefined normal region, an alarm is generated
to signal a potential anomaly. If the alarm persists, intervention
and troubleshooting of the process operation are recom-
mended. In practice, however, anomalies detected in process
variables alone do not always result in an anomaly in product
quality because of corrective actions by feedback controllers.
Nuisance alarms for situations where the quality is unaffected
tend to reduce the trustworthiness of the fault detection
methods.

Supervised learning methods, such as PLS and neural
networks, model the relation between process variables and
quality variables, which can reduce the occurrence of nuisance
alarms and improve the credibility of the monitoring system.
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By maximizing the covariance between the scores of quality
data and those of the process data, PLS decomposes the
original spaces into principal and residual subspaces, which can
be monitored by T? and Q statistics, respectively.® However,
since PLS maximizes covariance instead of correlation that is
done in canonical correlation analysis (CCA),” it usually
requires many latent dimensions to model even one output
variable. The excessive dimensions make a large portion of the
latent space irrelevant to the output to be modeled. Therefore,
not all variations in the PLS latent space are relevant to the
output variations.

Recently developed algorithms have been devoted to
overcoming these issues, including total PLS (T-PLS),'*™"*
concurrent PLS ((:PLS),13’14 and concurrent CCA (CCCA)
with regularization to deal with potential collinearity in the
process and quality variables.'">'® These supervised learning
methods simultaneously exploit covariations between process
data and quality data, and are robust to collinearity. In
addition, the concurrent CCA algorithmls’16 further monitors
quality-irrelevant variations in the input space.
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Quality-relevant process monitoring has received increased
attention since the early work on T-PLS.'”'' Li et al.'’
proposed a fault diagnosis method based on T-PLS, where the
diagnosis of process data variations is performed in four
subspaces. Liu et al.'® and Ge and Chen'® developed quality-
relevant fault detection by taking into account of dynamics in
the data. Huang and Yan®® proposed a two-block monitoring
scheme based on mutual information (MI) and kernel PCA. In
their scheme, process variables were divided into two sub-
blocks based on the MI values with quality variables. Ma et
al”' put forth a new robust Gaussian mixture model based
quality-relevant fault detection for multimode processes, where
quality-relevant faults are detected with a modified Mahalano-
bis distance. A Bayesian inference-based contribution index
was also designed to diaénose faulty variables that are relevant
to quality. Qin and Zhao™” designed a monitoring method with
consideration of quality information and process dynamics for
closed-loop manufacturing processes, where quality-relevant
process variations are separated by maximizing the correlation
between latent variables and quality variables. In addition,
nonlinear kernel and multiblock extensions are developed and
applied to industrial continuous annealing processes.””**

Diagnosis of a detected fault is necessary to further inspect
the fault situation. Contribution plots, as an early approach, has
been employed to diagnose a fault by determining the
contribution of each variable to a fault detection index.”**°
Westerhuis et al.”” showed that contribution plots has
smearing effects, which can lead to misleading results. To
avoid ambiguity, reconstruction-based diagnosis methods have
been proposed, where rigorous diagnosability can be analyzed
for a given fault direction.”® The advantage of the
reconstruction based method is that faults with known fault
directions can be diagnosed without ambiguity, but it requires
prior knowledge of fault directions. To avoid this requirement,
Alcala and Qin*’ proposed a reconstruction-based contribution
(RBC) method. If fault data are available for a particular fault,
the fault direction can be extracted from the fault data using
singular value decomposition.”” With the knowledge of fault
directions, a generalized RBC (GRBC) is proposed for
multidimensional fault diagnosis.'” Li et al.’' further applied
the generalized RBC to reconstruct along variable directions,
alleviating the need to derive fault directions.

Unlike diagnosis based on unsupervised learning models
where one can at most analyze abnormal changes in process
variables, quality-relevant diagnosis refers to the use of
supervised learning models for the diagnosis of a quality
anomaly due to relevant abnormal process variations. Since this
approach uses supervised learning models to relate quality
variations to process data, it is referred to as supervised
monitoring and diagnosis. In this approach quality anomalies
can be traced to relevant process variations with a supervised
model. Therefore, it is inferential and can avoid the usual
measurement delays of the quality variables. The reliability of
supervised diagnosis depends on (i) the accuracy of the
supervised learning model, and (ii) the variability of the data to
train the supervised model. After quality data are measured,
actual diagnosis of quality variables can be performed to
further validate the inferential diagnosis results.

Since anomalies in product quality are of critical concern in
industrial processes, this Article focuses on the supervised
diagnosis of ?uality faults based on concurrent CCA with
regularization. 32 Other supervised models, such as CPLS,
can also be used. We consider the typical situation where

quality measurements are sparse comparing to process data
and have significant measurement delays. Therefore, in this
paper, diagnosis is performed when a quality-relevant fault is
detected. When a quality-irrelevant process fault is detected,
diagnosis can also be performed, but with a much lower level
of attention. Quality monitoring is subsequently performed on
the quality data with delayed measurements. The Tennessee
Eastman process data is used to illustrate the supervised
diagnosis scheme by first categorizing the 15 disturbances
based on their impact on quality variables and then testing the
effectiveness of the proposed monitoring and diagnosis
method on all disturbance cases.

The main contributions of this Article are (1) the proposal
of a supervised diagnosis scheme for early process root-cause
diagnosis before the quality is measured and actual quality
monitoring after quality is measured; (2) the development of
the supervised monitoring method based on regularized
CCCA for monitoring quality-relevant and quality-irrelevant
abnormal variations; (3) derivation of the necessary and
sufficient conditions for supervised fault detectability; and (4)
discussion of common misuses of Tennessee Eastman process
(TEP) in the literature and categorizing the TEP disturbances
based on quality relevance.

The rest of this Article is organized as follows: Section 2
defines the supervised monitoring scheme based on supervised
models to detect quality-relevant faults and quality-irrelevant
disturbances. Supervised fault detection, detectability, and
diagnosis are discussed in Section 3 using CCCA models. The
generalized RBC method is adopted to diagnose quality-
relevant and quality-irrelevant process faults. In Section 4, the
Tennessee Eastman process and quality data are employed for
two objectives: one objective is to categorize the TEP
disturbances based on whether they have an impact on the
quality variables or not; another objective is to test the
effectiveness of the proposed monitoring method in detecting
and diagnosing quality-relevant and quality-irrelevant dis-
turbances. Conclusions are drawn in the last section.

2. SUPERVISED MODELING AND MONITORING

We discuss and analyze in detail the inferential quality
monitoring based on supervised models, the actual monitoring
based on quality data, as well as quality-irrelevant process
monitoring. The inferential quality monitoring used in
conjunction with actual quality monitoring can facilitate early
detection and root-cause diagnosis of relevant process
anomalies, and actual confirmation of quality faults.

2.1. Inferential and Actual Quality Monitoring. With
data analytics tools such as PCA, PLS, CCA, and other
machine learning methods, monitoring schemes of process and
quality anomalies can be configured based on the nature of the
models and data. Depending on the availability of quality data,
either supervised learning models or unsupervised learning
models can be built. Figure 1 depicts the inferential quality
modeling, process monitoring, and quality monitoring schemes
to be discussed in this section. The manufacturing process
collects fast sampling process data, which are often used for
feedback or feedforward control. The quality measurement
data are typically slow and infrequent with large measurement
delays. Although infrequent, these quality data are more critical
than process variables as they indicate whether the product is
good or not. The supervised monitoring includes inferential
quality monitoring based on a supervised model, but it also
monitors quality-irrelevant faults when they happen.
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Figure 1. Supervised monitoring includes inferential quality
monitoring, quality monitoring, and quality-irrelevant process
monitoring. Dotted line: Fast sampling process data. Long dashed
line: Slow and sparse quality data with measurement delays.

From Figure 1, we see that the product quality depends on
controlled variables (CV), disturbance variables (DV),
manipulated variables (MV), and potential faults (F). In
general, this dependence can be expressed with the following
relation,

y = g(CV, DV, MV, F) + noise (1)

where y can include quality variables, as well as other critical
variables. The disturbance variables include both measured and
unmeasured disturbances, and both of them can trigger MVs to
act to reject them due to feedback or feedforward control.
When the disturbance changes are compensated well by these
controllers, the quality variables y will be little affected.
Therefore, a supervised learning model that uses data from y
will neglect these DV and MV changes. These disturbance
changes are quality-irrelevant process variations. On the other
hand, if any of these changes or potential faults (F) result in an
abnormal change in y, they are referred to as quality-relevant
process variations. Within this setting it is clear that process
disturbances are different from faults as they do not always lead
to any effect on product quality.

Supervised monitoring includes the following scenarios
based on quality relevance.

(1) Inferential monitoring (IM). IM refers to the detection
and diagnosis of quality faults that can be inferred or
predicted from process variables. IM includes quality-
relevant monitoring (QrM) of abnormal variations that
exist in the training data. In some cases, it should include
potentially quality-relevant monitoring (PQrM) of
variations that do not exist in the training data, but
appear in real time data.'>'>"®

(2) Quality-irrelevant process monitoring (QiPM). QiPM
refers to the monitoring of faults in a subspace of the
training data that have significant variations orthogonal
to the quality-relevant subspace. QiPM should receive
lower attention than IM.

(3) Quality monitoring (QM). QM focuses on the monitor-
ing of variations in quality variables.”> Typically the
Hotelling’s T* and Q statistics are used to detect the
abnormal situations. However, QM cannot pinpoint to
which process variables contribute to the quality
anomalies since it does not build a supervised model
to correlate quality variables with process variables.

These monitoring schemes are collectively referred to as
supervised monitoring based on supervised models. Since IM
provides the monitoring of quality variables using an inferential
model based on process measurements, it can be executed as
frequently and as soon as the process measurements are
available. In this sense, IM is predictive. On the other hand,
QM is the final authority to determine whether product quality
is indeed abnormal or not, although it usually involves long
time delays and long sampling intervals. Since the quality
variables cannot be perfectly predicted from process variables,
there can still be false alarms in inferential monitoring.
Nevertheless, IM can significantly reduce nuisance alarms that
would be caused by unsupervised monitoring alone.

Monitoring that uses unsupervised models of process
variables alone is subject to false alarms caused by process
disturbances. Therefore, it is inappropriate to treat process
disturbances equally as process faults. For instance, the
Tennessee Eastman process has been popularly used as a
benchmark to demonstrate the detection rates of various
methods.”**> Numerous publications try to show an
incrementally high detection rate for a disturbance with their
methods, but it is actually a high false alarm rate in the case of
quality-irrelevant disturbances, which should be of no concern
at all.

2.2. Supervised Modeling. In the modeling phase, the
input matrix X € R™" consisting of n samples with m process
variables and the output matrix Y € R™ with p quality
variables are collected under normal conditions. PLS, for
instance, can be used to decompose the scaled and mean-
centered X and Y as

X=TP +E (2)

Y=TQ" +F 3)

where the columns of T are latent score vectors and P and Q
are loading matrices for X and Y, respectively. E and F are
residuals for X and Y, and the number of PLS factors can be
determined by cross-validation.*®*’ Although T* and Q
statistics are suggested for PLS-based monitoring with the
implication that T* is quality relevant and Q is process
relevant,”® this scheme has two major problems as zpointed out
by Li et al,'® Zhou et al,'? and Qin and Zheng.l‘
Considering the efficiency of CCA over PLS in predicting
the output, Zhu et al.'® proposed a regularized concurrent
CCA algorithm to realize a comprehensive decomposition of
the original space. The algorithm includes a regularized CCA,
which is given in Appendix A, followed by a PCA
decomposition of the residuals. The regularization parameters
k, and k, are employed to control near-zero eigenvalues in
strongly collinear cases, and they are determined by cross
validation.'® The decomposition by the regularized CCA is

X =TR! + X O]

where T. = XR_ € R™ and R.€ R™ % are the correlation
scores and loadings from the regularized CCA model, which is
referred to as the correlation subspace (CRS), and the number
of principal components I, is determined by the cross
validation. R! = (RTR.)7'RT is the Moore—Penrose
pseudoinverse. The residuals X, are decomposed further with
the PCA model

X.=TpP +X (s)
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where P, € R™% and T € R"™ are PCA loadings and scores
in the orthogonal complement of CRS, which is referred to as
the process-principal subspace (PPS), and X are the
corresponding PCA residuals, which lies in the process-
residual subspace (PRS).

Combining the above two models gives the following
relation:

X =TR! + TP, + X (6)

A particular row of eq 6 represents the model relation for
one sample of the data, which is

x' = 'Rl + /P + X7
or
_ p’T, <
X—Rc tC+thx+X (7)
where

T, . .
t. = R_x is the correlation score vector

t, = P-(I — RR))x is the principal score vector

X = (I - PxPI)(I - RCRDX

3. SUPERVISED MONITORING AND DIAGNOSIS

3.1. Supervised Monitoring. The corresponding mon-
itoring indices for each of the three parts in eq 7 are
summarized in Table 1, where A, = (n — 1)7'TTT, is the

Table 1. Monitoring Indices and Control Limits Based on
CCCA Decomposition”

index scheme control limit
T2 = t{A Tt QM = {[l(w* = D/[n(n = I)13Fmta
Q. =%'% PQ:M 8.2 = glia’

T2 =tA 't,  QPM 72 = {[L(w* = D)/[n(n = L)F 0

“The control limits are derived in Zhu et al.'°.

covariance matrix of the scores t. Since T, are the canonical
variate scores, which are orthogonal in CCA, A_ is proportional
to an identity matrix. Therefore, we can simply let T.> = t t..
A, contains the principal eigenvalues of X_.

When a fault occurs, it usually affects more than one fault
detection index. Therefore, we have the following scenarios to
prioritize the fault detection alarms:

L. If the T2 index alarms, the fault is quality-relevant
regardless of the other detection indices.

2. If the T2 index does not alarm but Q, alarms, the fault is
potentially quality-relevant.

3. If the T, index alarms only, the fault is quality-

irrelevant.

The fault detection indices T.> and Q, can be combined as
an index for inferential monitoring38

> Q .
¢%C = < r = X (I)xx
AN (8)
where
RcAc_lR;r (I - RCRD(I - PxP:)(I - RCRD
@, = 2 + 52
7 )

Since ¢, is a quadratic function of x, its control limit can be
easily obtained.”®*” The three monitoring indices based on x
can be unified as

Index(x) = x"Mx 9)

where M is given in Table 2.

Table 2. Formulations of M

index M
T? RA.'R]
Q. (1 - RR)(1 - PPI)(I - RRY)
b D,

For quality monitoring after the quality data are measured,
the following QM index can be used with a PCA model of the
quality data:

T}?
) )y T,
b=—F+ 5=y Dy
L 1)
y y (10)

@, is the associated combined index.”® The QM index provides
a confirmation of the quality fault, but it is infrequent and
subject to measurement delays.

3.2. Supervised Fault Detectability. When a fault
occurs, the faulty sample vector can be represented as

*

XxX=x + ng (11)
where x* is the sample vector under normal operating
conditions, and &f is the fault part added to x*. In eq 11,

S R™ 4 is an orthonormal matrix that spans the fault

subspace with dimension Ay and f is the magnitude of the fault.
When A; = 1, € reduces to a vector with unit norm, and it is
classified as a unidimensional fault.

Substituting eq 11 into eq 9, we obtain

2 2
Index(x) = |[M"*x||” = ||M'/*x™ + M"/ & ]|
=2
= |I=* + Efl| (12)

where ¥ = M"/**, and E_l = Ml/2§i. The matrix M can be

any case in Table 2. Although &; has full column rank, & may
not have full column rank. After applying singular value
decomposition on €, we can get

£ =UDv,
— gO qy
=£°DYV, (13)

where D; contains nonzero singular values and & = U,
Then, eq 12 can be rearranged into

Index(x) = ||x* + §,~0DiVin||2
OO 2
= |I=* + £°f° (14)

where f° = D,V/f. Depending on the rank of & and how the
fault occurs relative to the null space of €', the quality-relevant
fault detectability can have three possible scenarios, which are
summarized in Lemma 1.

Lemma 1. The detectability condition of quality-relevant
faults can be summarized as follows:
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(1) Ifrank(€) = 0, then the fault is not detectable no matter
what f is.

(2) If 0 < rank(€) < Aj then the fault is not detectable if
f € N(V,), where N(-) denotes the null space.

(3) If rank(€) = Aj then the fault is detectable for f # 0.

Lemma 1 is only the necessary condition for a fault to be
detectable. However, to guarantee fault detection, the
magnitude of the fault should be large enough such that
Index(x) > ¢ where ¢* is the control limit. The sufficient
detectability condition is shown in Lemma 2.

Lemma 2. When f & N(V,), the quality-relevant fault is
guaranteed to be detected if ||f]| > 2{/d,;,, where d;, is the
minimum nonzero singular values of

The proof of Lemma 1 and Lemma 2 is given in Appendix B.

3.3. Supervised Diagnosis. To perform diagnosis once
they are detected by a monitoring index, Zhu et al.”* derive the
following contributions for eq 9:

" = (£ ’x) (15)

& is a column vector of the identity matrix, and the following
reconstruction-based contributions (RBC)

RBC = x'ME(&"ME) & Mx (16)

where & is a fault direction matrix, which can have multiple
columns. In the case that & is a column vector

pet — & M)
oEmg

1

which shows the similarity between RBC and contributions.

For the case of the Q, index, M*> = M. Therefore, M2 =M.
In this case, RBC is exactly scaled contributions. Equations 15
and 16 have quadratic forms, so their control limits can be
approximated using Chi-square distributions.*”

For multidimensional faults, we adopt the generalized RBC
approach.’*” The generalized RBC reconstructs along a
variable direction with the largest RBC and augments the
reconstruction subspace with the next largest contributing
variable, until the fault detection index returns to the normal
region. The effectiveness of the generalized RBC will be
demonstrated in the next section using the TEP data.

4. SUPERVISED DIAGNOSIS OF THE TENNESSEE
EASTMAN PROCESS

The Tennessee Eastman process'  was created to provide a
challenging benchmark for the purpose of developing, studying
and evaluating plant-wide control strategies. The process
makes two products (G and H) and a byproduct (F) from four
reactants (A, C, D, and E) with the following reactions:

A(g) + C(g) + D(g) = G()
A(g) + C(g) + E(g) » H()
A(g) + E(g) — F()
3D(g) — 2K(1)

The TEP process diagram along with feedback control loops
can be found in Lyman and Georgakis."'

The TEP simulation benchmark was first used for process
monitoring by Ku et al.** and Raich and Cinar.*”* Later Chiang
et al.>* used it again for fault diagnosis and classification, which

generated data for a disturbance-free period and data for each
of the 15 known types of disturbances. Since then, based on a
recent Scopus search, over 600 papers have been published by
the end of 2018. It has been observed that most of the recently
published papers tried to increase the detection rates of these
disturbances, but many of the disturbances should not be of
concern since they are compensated well by feedback
controllers. Other inappropriate uses are summarized in Zhu
et al.*” If a disturbance is well compensated with feedback and
teedforward controllers and thus has no impact on the product
quality, any alarms based on it would be nuisance and would
be annoying to the operation personnel. Therefore, one
objective of this session is to categorize these disturbances
based on whether they have an impact on the quality variables
or not. Another objective is to test the effectiveness of the
proposed supervised method in diagnosing quality-relevant
and quality-irrelevant disturbances.

4.1. Quality Monitoring of TEP Disturbances. The
main products G and H are extracted in stream 11, which are
measured every 15 min with a time delay and are main quality
variables of concern. Additionally, the byproduct F is purged
from the separator and flowed into stream 9, which should also
be concerned if it is affected by a disturbance. We perform
quality monitoring on the quality data of these products to
determine whether these disturbances have an impact on the
quality variables or not.

The descriptions of the 15 known disturbances in TEP are
shown in the first three columns of Table 3. Figure 2 shows the

Table 3. TEP Disturbances and Their Impact on Quality

QM
disturbance description type impact
IDV(1)  A/C feed ratio (stream 4) step yes
IDV(2) B composition (stream 4) step yes
IDV(3) D feed temperature (stream 2) step no
IDV(4) reactor cooling water inlet temperature  step no
IDV(S) condenser cooling water inlet step yes
temperature
IDV(6) A feed loss (stream 1) step yes
IDV(7) C header pressure loss—reduced step yes
(stream 4)
IDV(8) A, B, C feed composition (stream 4) random yes
IDV(9) D feed temperature (stream 2) random no
IDV(10)  C feed temperature (stream 4) random no
IDV(11)  reactor cooling water inlet temperature random no
IDV(12)  condenser cooling water inlet random yes
temperature
IDV(13)  reaction kinetics slow drift yes
IDV(14)  reactor cooling water valve sticking no
IDV(15)  condenser cooling water valve sticking no

quality monitoring results for one disturbance-free case and 15
disturbance cases using the combined index ¢, in eq 10. From
this figure, we can see that seven of the 15 disturbance cases
have no impact on the quality variables. Among the eight cases
that have impact on the quality variables, IDV(S) (condenser
cooling water inlet temperature) and IDV(7) (C header
pressure reduced in stream 4) have only temporary impact on
quality shortly after the fault occurred. The classification of
these disturbances in terms of quality impact is summarized in
the fourth column of Table 3. For the seven quality
unimpacted cases, five of them are temperature changes that
are compensated well by feedback controllers. The other two
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Figure 2. Quality monitoring results on the disturbance free case and each of the 15 disturbance cases using ¢,.

cases are sticking valves of cooling water, which do not yield an
impact on quality. They should be better monitored with valve
stiction detection algorithms.**

4.2. Supervised Monitoring for TEP. For monitoring
based on process data, CCCA, PLS, and PCA are performed to
compare the effectiveness of quality relevant monitoring. The
selected process variables are XMEAS(1—22) and XMV(1—
11) and the quality variables are XMEAS(41, 42, 34) for
products G, H, and F. After handling the unequal sampling
rates and measurement delays in the quality data, 100 normal
samples are used to build the models. The number of
components used in the models are determined by cross-
validation: for CCCA, I.=2,1,=19, ly =3,k; =0.021, and , =
0.002, where k; and k, are the regularization terms for process
and quality data respectively; for PLS, | = 10 and for PCA, | =
19. The confidence level for the control limits is chosen as
99%.

The quality-relevant index T.> with CCCA for the quality
impacted cases and unimpacted cases are summarized in
Tables 4 and S, respectively. Table 4 includes all eight quality
impacted cases. From Figure 2, it is seen that the QM control
limits are exceeded intermittently for most of the quality
impacted cases. Therefore, we use the number of QM-alarmed

Table 4. Quality-Relevant Alarm Rates for the Quality-
Impacted Cases (%)

disturbance CCCA PLS PCA
IDV(1) 100 100 99.36
IDV(2) 100 100 100
IDV(S) 93.26 72.73 75.76
IDV(6) 100 100 100
IDV(7) 100 98.85 95.40
IDV(8) 100 100 100
IDV(12) 100 100 100
IDV(13) 100 100 99.56

“The higher the better.

Table S. Quality-Relevant Alarm Rates for the Quality
Unimpacted Cases (%)“

disturbance CCCA PLS PCA
IDV(3) 3.17 14.29 15.34
IDV(4) 4.74 57.37 83.68
IDV(9) 2.63 11.58 16.84
IDV(10) 8.85 44.27 44.27
IDV(11) 8.38 50.79 65.97
IDV(14) 13.23 83.60 84.13
IDV(15) 2.66 11.70 9.04

“The lower the better.

samples as the denominator to calculate the inferential
detection rates. We see from Table 4 that the T.? index with
CCCA successfully detects the quality-impacted faults. For
comparison, we also applied PLS and PCA on these cases,
which are shown in Table 4 as well. It is seen that T.* with
CCCA outperformed the other methods. On the other hand,
for the quality-irrelevant cases shown in Table 5, T.> with
CCCA based monitoring shows very low percentage of alarms,
which indicates that these disturbances are not quality-relevant.
However, PLS and PCA give much higher alarm rates, which
are nuisance alarms.

4.3. Supervised Diagnosis for TEP. To perform
diagnosis for faults and disturbances in Tables 4 and 5,
CCCA-based contribution plots, RBC, and GRBC are
performed. Following the order of priority of T Q, and
T,%, the combined index ¢, is used for diagnosis when T.
alarms. If T.> does not alarm but Q, does, Q, is used for
diagnosis. For the limited space, we only illustrate IDV(1) as
an example of the quality-impacted cases and IDV(3) and
IDV(4) as examples of the quality-unimpacted cases. Figure 3
gives a preview of the quality-relevant monitoring results of the
IDV(1) and IDV(3) cases based on T.% which clearly show
that IDV(1) is quality relevant while IDV(3) is not.
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(a) Quality-relevant monitoring for IDV(1)

(b) Quality-relevant monitoring for IDV(3)

Figure 3. Quality-relevant monitoring results for IDV(1) and IDV(3) based on T,

4.4. Diagnosis of the Impact of IDV(1). The supervised
monitoring results for IDV(1) based on regularized CCCA are
shown in Figure 4. It is observed that the QrM index T agrees

Monitoring Index
Control Limit
=== Quality Monitaring with Detays

~ Fault Occurs

&~
T
|
|

:

J | = '
10° M‘i =

100 120 160

Figure 4. Monitoring results for IDV(1) based on regularized CCCA.
The QrM index T.? agrees well with the QM index Tyz.

well with the QM index Tyz, which shows its effectiveness to
detect quality-relevant faults. It is also observed that the T.
index detects the fault faster than the QM index T},2 does.

To diagnose IDV(1) as a quality-relevant fault, we apply
contribution plots and RBC for T.2, Q,, or ¢, after these
indices exceed the control limits as if they would be done in
real time. As shown in Figure 4, right after the disturbance is
introduced, the Q, and ¢, indices alarmed immediately. The
T2 index is marginally above the control limit initially for
samples 33—36, then goes above the control limit significantly.
Therefore, we pick the samples 33—36 and 42 as examples to
diagnose the progression of the fault based on ¢, which is
shown in Figure S. It is noted that the contribution plots and
RBC are scaled by their control limits for easy visualization.
From Figure S, on the basis of the magnitudes of both
contribution plots and RBCs, we observe that variables 4 (4/C
feed in stream 4) and 20 (compressor work) are persistent
high contributors through these samples. At sample 42,
variable 16 (stripper pressure) shows a high contribution.
Since IDV(1) is a step change in A/C feed ratio, variable 4 (A/
C feed in stream 4) is correctly diagnosed. We can see that the
early diagnosis of samples 33—36 is predictive before the
quality is significantly impacted.

In addition, the RBC makes these variables more standing
out than the contributions do, but they all point to multiple
high contributions since the fault impact is multidimensional.

120 T

Control Lmdt
I #veaged Contribution Pots for

.f-'.;).(l.l '.tl.l.::. I.I':I.l.
I Aveaged RBC for ¢
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(a) RBC and contributions for Samples 33-36 [averaged]

200
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(b) RBC and contributions for Sample 42

Figure S. Diagnosis results of IDV(1) using contributions (upper) and RBCs (lower) based on ¢,.
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arintles Samples

Variaties

Figure 6. Generalized RBC diagnosis result for IDV(1) for all samples (left) and average RBC (right) . First row: Initial RBCs. Second row: RBCs
after reconstructing along variable 4. Third row: RBCs after reconstructing along variables 4 and 23. Fourth row: RBCs after reconstructing along

variables 4, 23, and 8.

Therefore, the generalized RBC method is applied next. Figure
6 shows the results of GRBC by successively including the next
highest contributing variable in the reconstruction iterations.
The left charts show the contributions after including the next
variable for reconstruction, while the right charts shows the
next highest-contributing variable on average to be included.
With GRBC the extracted variables are variable 4 (A/C feed in
stream 4), variable 23 (D feed flow in stream 2), and variable 8
(reactor level), successively.

For IDV(1), a step change is introduced in A/C feed ratio.
Variable 4, which is the A/C feed in stream 4, is affected
immediately. Then, because of the mass balance required for
the reactions, the feed flow of reactant D in stream 2 (variable
23) decreases, which leads to a decrease of the throughput of
product G. Since G is a liquid, the reactor level (variable 8) is
also affected. Variables S, 16, and 20 have high RBCs before
any reconstruction, but they disappeared after reconstructing
along variables 4, 23, and 8, as shown in Figure 7, which means
that they are dependent on variables 4, 23, and 8.

4.5, Diagnosis of the Impact of IDV(3) and IDV(4).
Since the supervised monitoring can be executed as soon as the
process measurement data are available, the related indices are
calculated once every 3 min for IDV(3) and IDV(4), while the
quality monitoring index T},2 is calculated once every 15 min.
The case of IDV(4) is chosen since in this case the proposed
monitoring method reduces nuisance alarms significantly.

For IDV(3), which is a step change in the D feed
temperature, the fault detection results are shown in Figure
8. It is clear that this case is a quality-irrelevant disturbance,
since the T, index is within control. There are only a small
fraction of samples where Q, is marginally above the control
limit. For the sake of completeness, the T, contribution plots
and RBC for the 250th process sample are shown in Figures 9.

10% — - ; 0 = i s i . = =
Original Index

Control Limit 1
*  Reconstructed Index |

G e,

.
L - 4
.

[v] pi) 40 60 80 100 120 140 160 180 2008

Figure 7. Combined index ¢, for IDV(1) before and after
reconstruction along variables 4, 23, and 8 identified by generalized
RBC.

It is observed that the contributions and RBC for T.? are small
across all variables, which confirmed that the case is quality-
irrelevant.

For IDV(4), which is a step change in the reactor cooling
water inlet temperature, the fault detection results are shown in
Figure 10. It is again a case of quality-irrelevant disturbance,
since the T2 index is within control except for the sample right
after the disturbance occurred. The Q, index is above its
control limit. Therefore, we pick the 250th process sample to
calculate the contributions and RBC of the Q, index for
diagnosis, which is shown in Figure 11. It is seen that variable
32 has a high contribution for Q,. Variable 32 is the reactor
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Figure 10. Monitoring results for IDV(4) based on regularized
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Figure 11. Diagnosis results for the 250th process sample of IDV(4)
using contributions (upper) and RBC (lower) with Q..

cooling water flow, which acted to compensate for the step
change in the reactor cooling water inlet temperature. To
conclude, the proposed supervised monitoring method clearly
indicates that IDV(3) and IDV(4) are quality-irrelevant.

5. CONCLUSIONS

In this Article, a supervised monitoring and diagnosis
framework is formulated to deal with the detection and
diagnosis of quality-relevant and quality-irrelevant faults.
Concurrent CCA with regularization is employed to calculate
the quality-relevant, potentially quality-relevant, and quality-
irrelevant monitoring indices. The supervised monitoring
indices can be calculated as soon as the process data are
measured, which provide predictive monitoring for product
quality. The generalized RBC approach is shown to be more
effective than RBC and contributions for multidimensional
inferential fault diagnosis. Finally, the performance of
supervised monitoring and diagnosis based on regularized
CCCA is successfully demonstrated using the TEP simulation
data, where the 15 disturbances are classified into quality-
impacted faults and quality unimpacted disturbances based on
the quality monitoring of two products and one byproduct.

Bl APPENDIX A

Regularized CCA Algorithm
This regularized CCA algorithm is adapted from Zhu et al.'®

1 Scale the data X, Y to zero mean and unit variance.
2 Perform eigenvalue decomposition on the matrices X'X
and Y'Y to calculate the square roots

T N
X'X = VD V!

Ty _ T
YY=VDYV,
£ = v(D, + K1)

—1/2 _ —1/2/T
X =VD, + K1)V,
where x; and k, are regularization weights.

3 Perform SVD and calculate the weight matrix R,

Z;xl / ZXTYZ;yl /2 — ay

Usv
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R =X."U

where S contains the non-zero singular values only.
4 Obtain the canonical correlation scores T, = XR..

B APPENDIX B

Proof of Lemmas 1 and 2
If rank(€,) = 0 (i.e., & = 0), according to eq 12, the fault cannot
be detected.

If f € N(V,), then

f°=DVf=0 (17)

This makes the second term of eq 14 equal to zero and
Index(x) always within ¢* Thus, in this case, the fault is not
detectable as well.

If rank(€,) = Aj, that is, € has full column rank, the fault is
detectable for a large enough fault magnitude.

If f & N(V)), in order for the fault to be guaranteed detected

Index(x) = |IX* + EfI” > (IIK*| - IEFI)* > ¢ (18)

Since the fault-free portion |[x*|| < { it is sufficient to require
that Efll > 2. Therefore,

1. If rank(€) = Ay &; is a full column-rank matrix and all the
singular values are greater than 0. Then [IEfll > d, [Ifll >
2.

2. If 0 < rank(€) < Aj, then some of the singular values are
zero. Then the minimum singular value d,;, is adopted
among the nonzero ones, which gives d [Ifll > 2.

Thus, when Ifll > 2{/d,;,, the fault can be guaranteed to be
detected.
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